

Various Methods to Evaluate the Long-term Reliability of PE Pipes and Joints in use at Osaka Gas

Yuji Higuchi*, Seiji Miyaki, Takafumi Kawaguchi, Energy Laboratories, Osaka Gas Co., Ltd.

Hiroyuki Nishimura Advanced Fibro Science, Kyoto Institute of Technology

Items for Presentation

Introduction
Objectives
Evaluation Methods for Pipes
Evaluation Methods for Joints
Conclusion

Total Installation Length of PE Pipes in Japan

Introduction

Objectives

How Do We Estimate the Lifetime of PE Pipes and Joints ?

Mechanical MethodsChemical Methods

	Pipe	Joint
New	1	3
Failed	2	4

Mechanical Methods Hydrostatic Stress Rupture Test -

Time to failure

Failure = Crack Initiation + Crack Propagation

Methods

Methods Mechanical Methods for Pipes - Full-Notched Tensile Creep Test (FNCT) -- Full-notched Tensile Fatigue Test (FNFT) -

Failure = Crack Initiation + Crack Propagation

Acceleration to evaluate long-term reliability by using Mechanical Methods

Year	1979		1990		1993				
	Mechanical methods								
Test method	Hydrostatic stress rupture	rostatic Tensile ress creep pture -FNCT-			Tensile fatigue -FNFT-				
Evaluation period	One year		Six months		Three months				
Feature	 Pipe Creep 		 Specimen Creep 		 Specimen Creep Fatigue 				

Methods

Failure Mode and Structure

Methods for Pipes

Chemical Methods for Pipes - Analysis of PE Resin Structure -

Parameters	Factors	Con	cept	Equipment		
Molecular	Number	$\wedge \wedge$		GPC		
weight	Distribution					
Branching	Length	\sim		¹³ C-NMR		
	Amount			IR		
	Distribution			TREF-GPC		
Antioxidant	Composition	Phenol, s	sulfur	TLC,MASS		
	Contents	phosphorus,HALS		HPLC,DSC		

Chemical Methods Molecular Weight and Branching

Methods

Tensile Creep Result - FNCT -

Methods

Estimation of Long-term Reliability from Resin Structure

Long-term reliability was estimated by structural analysis.

Methods

Acceleration to Evaluate the for Pipes

Year	1979	1990 1993					1997		
Test method		Chemical -Micro-							
	Hydros- tatic stress rupture		Tensile creep -FNCT-		Tensile fatigue -FNFT-		Analysis		
Evaluation period	One year		Six months		Three months		Three Weeks		
Feature	Pipe Creep		Specimen Creep		Specimen Creep Fatigue		Resin		

Long-term Reliability of Damaged PE Pipes

Methods for Pipes

- Polarized Microscope -

Long-term Reliability of Damaged PE Pipes

Methods for Pipes

- FNCT -

Pipes with more than 30% notch depth have significantly decreased long-term reliability.

Polarized Microscope - Electrofusion Joint -

Methods for Joints

Melting zone can be seen by polarized microscope. This enables the quality of fusion conditions to be confirmed.

Simulation of Cooling Process

GRC

Methods

for Joints

Deformation of EF Joints

150 cm

Methods

for Joints

Long-term Reliability of EF Joints^{for Joints}

Methods Transmission Electron Microscope for Joints -TEM -

Methods for Joints

Detecting Contamination - Polarized Microscope -

Sand or water drops may contaminate the fusion interface

The fusion area decreases due to sand and water contamination on the fusion interface.

Methods for Joints

Detecting Contamination - Ultrasonic Inspection – NDT -

Transducer and jig

- Point-focused type
- Frequency : 5MHz
- Polyethylene shoe
- Polymer transducer

B-scan image ultrasonic machine

- Weight : 0.85kg
- Size : 18×10×8cm

Conclusion

			Long-term reliability methods									
		Mechanical		Chemical				Other				
		Hydrostatic pressure	Tensile creep	Tensile fatigue	Resin structural analysis	Additive analysis	Observation	Polarized microscope	Electron microscope	Simulation	Ultrasonic inspection	
Pipe Joint Gas	Pi	Normal	•	0	0	•	0	×	×	×	×	×
	pe	Damage	•	×	×	×	×	0	0	×	×	×
	oL	Fusion	•	0	0	×	•	×	0	0	●	×
	int	Contamination	•	0	0	×	×	0	0	0	×	•
Hot Water		•	0	0	0	•	0	0	0	0	0	

Mutual collaboration in Japan

Resin Manufacturer

Design know-how

Pipe & Joint Manufacturer

Gas Company